

УДК: 636.52/.58.033.085.8

РЕЗУЛЬТАТИВНОСТЬ ВЫРАЩИВАНИЯ БРОЙЛЕРОВ В ЗАВИСИМОСТИ ОТ УРОВНЕЙ ОБМЕННОЙ ЭНЕРГИИ И ПРОТЕИНА В ПРЕСТАРТЕРНЫХ РАЦИОНАХ

Фисинин В.И., президент Росптицесоюза, научный руководитель ФНЦ «ВНИТИП» РАН, академик РАН, д-р с.-х. наук, профессор

Егоров И.А., руководитель научного направления питания сельскохозяйственной птицы, академик РАН, д-р биол. наук, профессор

ФГБНУ Федеральный научный центр «Всероссийский научно-исследовательский и технологический институт птицеводства» РАН (ФНЦ «ВНИТИП» РАН)

Османян А.К., профессор, д-р с.-х. наук

Махдави Р., аспирант

Малородов В.В., магистрант

ФГБОУ ВО «Российский государственный аграрный университет — МСХА имени К.А. Тимирязева» (РГАУ — МСХА имени К.А. Тимирязева)

Аннотация: Авторами выполнено исследование эффективности выращивания бройлеров при скармливании им престартерных рационов, различающихся по содержанию обменной энергии и уровню сырого протеина.

Abstract: The authors carried out research on the efficiency of growing broilers when fed prestarter diets differing in the content of metabolizable energy and crude protein content.

Ключевые слова: бройлеры кросса «Кобб-500», питательность престартерного рациона, усваиваемые аминокислоты, уровень протеина, содержание обменной энергии в престартерных рационах.

Key Words: broilers cross "Cobb-500", nutrition prestarter diet, digestible amino acids, protein level, metabolizable energy content in prestarter diets.

Введение

Как известно, одно из важнейших условий реализации генетически обусловленных продуктивных качеств бройлеров — рациональная организация их полноценного кормления. Наряду с обеспечением птицы рационом, сбалансированным по питательности и энергии, необходимо, чтобы была удовлетворена ее потребность в протеине с аминокислотным (АМК) составом, структурированным по количественному содержанию незаменимых аминокислот [3].

Критический период в онтогенезе птицы — первые 7–10 сут. жизни. В этот период она должна получать престартерный рацион, составленный из легкоусваиваемых ингредиентов и обеспечивающий высокую экспрессивность генов цыплят. Это объясняется тем, что на начальной стадии развития птицы происходит пролиферация клеток, влекущая за собой морфологические и физиологические изменения, во многом определяющие ее будущую жизнеспособность и продуктивность [2, 4].

Потребление корма цыплятами в постэмбриональный период имеет

фундаментальное значение, поскольку в это время метаболизм на основе липидов заменяется обменом веществ на основе углеводов и белков, а также нутриентов, необходимых для развития и роста птицы, — в престартерном рационе они должны быть сбалансированы. Качественное кормление бройлеров на ранних стадиях развития позволяет обеспечить в перспективе высокую однородность их поголовья за счет улучшения потребления и усвоения корма [1, 5].

И несомненно, балансирование престартерного рациона по количеству обменной энергии и сырого протеина по-прежнему остается актуальной проблемой.

Цель исследования

Цель работы — обеспечить высокую продуктивность бройлеров посредством подбора оптимального соотношения в престартерном рационе уровней обменной энергии и сырого протеина.

Материалы и методы исследования

Эксперимент проводили базе ФНЦ «ВНИТИП» РАН в условиях селекционно-генетического центра и в Загорском экспериментальном племенном

Таблица 1

Схема опыта

	CX	ема опь	па						
	Группа								
Показатель	Конт- роль	Опыт- ная 1	Опыт- ная 2	Опыт- ная 3	Опыт- ная 4	Опыт- ная 5			
Содержание в предстартерном рационе, г в 100 г									
Обменная энергия, ккал	300	300	300	290	290	290			
Сырой протеин	21,4	23,0	24,6	21,4	23,0	24,6			
Ус	вояемы	е аминс	жислот	ы					
Лизин	1,19	1,28	1,37	1,19	1,28	1,37			
Метионин	0,51	0,55	0,47	0,51	0,55	0,47			
Метионин + цистеин	0,88	0,95	1,02	0,88	0,95	1,02			
Треонин	0,80	0,86	0,92	0,80	0,86	0,92			

№ 6

Таблица 2

Средняя живая масса бройлеров, г

Возраст,			Гру	ппа		
сут.	Контроль	Опытная 1	Опытная 2	Опытная 3	Опытная 4	Опытная 5
1	44,3±0,23a	44,5±0,48 a	44,4±0,00 a	44,3±0,58 a	44,2±0,18 a	44,7±0,58 a
10	194,3±5,74 a	209,0±2,44 аб	236,1±9,22 в	208,7±13,14 аб	217,2±9,66 б	234,8±9,45 в
21	706,6±36,68 a6	727,1±16,62 абв	782,8±20,70 бв	723,6±16,80 аб	744,1±35,68 абв	790,8±22,49 в
28	1 199,3±65,80 a	1 217,7±31,32 a	1 320,2±60,80 б	1 212,2±43,61 a	1 224,4±60,41 a	1 327,6±43,20 б
39	1 975,9±102,14 a	2 018,5±49,31 аб	2 136,2±102,83 б	2 025,4±106,27 аб	2 041,5±90,07 a6	2 140,9±63,29 б

Примечание. Разность между средними значениями в группах (в пределах возраста), достоверна при $P \ge 0.95$.

хозяйстве в производственных помещениях для выращивания бройлеров с клеточной системой содержания. Были сформированы шесть групп суточных цыплят: контрольная и пять опытных. Всего в эксперименте выращивали 480 гол. бройлеров кросса «Кобб-500», по 80 гол. в каждой группе, распределенных методом случайной выборки в суточном возрасте по 20 гол. в каждой клетке с плотностью посадки 20 гол. на 1 м². В контрольной и опытных группах птицу содержали в сходных микроклиматических условиях.

Бройлеры всех групп до возраста 10 сут. получали престартерный рацион с различными уровнями обменной энергии и сырого протеина (табл. 1). В последующие 29 сут. выращивания кормление осуществляли по фазам «стартер» и «финишер», в которых экспериментальные уровни обменной энергии и сырого протеина соответствовали рекомендациям компании — производителя кросса «Кобб-500» [6]. В престартерный период этим рекомендациям соответствовал рацион контрольной группы.

Результаты исследования и их обсуждение

Установлено, что в 10-суточном возрасте бройлеры опытных групп 2, 4, 5 достоверно превосходили по средней живой массе бройлеров контрольной группы: на 41,8; 22,9 и 40,5 г соответственно. В возрасте 21 сут. бройлеры контроля в сравнении с птицей опытной группы 5 достоверно уступали по изучаемому показателю своим сверстникам — на 84,2 г. По средней предубойной живой массе разница оказалась достоверной между контрольной и опытными группами 2 и 5 с их показателями в 2136,2 и 2140,9 г, что выше по сравне-

нию с контрольной группой на 160,3 и 165,0 г, или на 7,5 и 7,7% соответственно (*табл. 2*).

Более высокой скоростью роста в течение всего периода выращивания отличались цыплята опытных групп 2 и 5 (*табл. 3*).

Однородность поголовья бройлеров по живой массе (табл. 4) начиная с 21-суточного возраста была наибольшей в опытных группах 2 и 5. В них же поголовье цыплят (с того же возраста) отличалось самой низкой изменчивостью живой массы (табл. 5).

Таблица 3

Среднесуточный прирост живой массы бройлеров, г

		Группа						
Возраст, сут.	Конт- роль	Опыт- ная 1		Опыт- ная 3	Опыт- ная 4	Опыт- ная 5		
0-10	15,0	16,5	19,2	16,4	17,3	19,0		
0-21	31,5	32,5	35,2	32,3	33,3	35,5		
0-28	41,2	41,9	45,6	41,7	42,2	45,8		
0-39	49,5	50,6	53,6	50,8	51,2	53,7		

Таблица 4

Однородность бройлеров по живой массе, %

	Группа						
Возраст, сутки	Конт- роль	Опыт- ная 1	Опыт- ная 2	Опыт- ная 3	Опыт- ная 4	Опыт- ная 5	
0	100	96,4	100	98,7	96,0	98,2	
10	79,4	83,2	82,2	85,7	84,3	86,1	
21	82,2	80,5	90,7	84,7	85,5	89,2	
28	83,7	82,0	93,2	83,2	88,0	86,7	
39	81,0	84,2	91,2	84,3	84,3	88,5	

Таблица 5

Изменчивость (CV) живой массы бройлеров, %

	Группа						
Возраст, сут.	Конт- роль	Опыт- ная 1	Опыт- ная 2	Опыт- ная 3	Опыт- ная 4	Опыт- ная 5	
0	5,92	7,26	6,67	7,03	7,32	6,31	
10	16,78	14,25	14,05	14,56	14,57	14,95	
21	13,86	15,51	12,50	14,06	13,47	13,34	
28	15,26	15,91	11,80	15,01	13,37	12,84	
39	15,86	14,82	12,20	13,85	13,32	12,36	

Таблица 6

Сохранность поголовья бройлеров, %

сохранность поголовья ороилеров, %								
		Группа						
Возраст, сут.	Конт-			Опыт-		Опыт-		
	роль	ная 1	ная 2	ная 3	ная 4	ная 5		
0-10	100,0	100,0	100,0	100,0	100,0	100,0		
0-21	98,8	100,0	100,0	100,0	100,0	98,8		
0-28	98,8	100,0	100,0	98,8	100,0	100,0		
0-39	97,5	97,5	98,8	97,5	97,5	97,5		

По окончании выращивания наивысший показатель сохранности был отмечен в опытной группе 2 с показателем 98,75%, что на 1,25% выше в сравнении с контролем и опытными группами 1, 3, 4 и 5 (табл. 6).

Анализ расхода кормов на 1 кг прироста живой массы бройлеров в возрастной период 0–10 сут. (табл. 7) показал, что в сравнении с контрольной группой и опытной 3, в которых он составил 1,22 кг, в опытных группах 1, 2, 4 и 5 было израсходовано корма в расчете на 1 кг прироста живой массы меньше на 40, 200, 70 и 170 г соответственно. За весь период выращивания расход корма во всех опытных группах оказался ниже в сравнении с контрольной: в ней было израсходовано 1,78 кг и это на 90 г больше, чем в оп-

тимальном по расходу корма варианте (опытная группа 5). Комплексный показатель индекса продуктивности бройлеров, определяющий эффективность их выращивания, оказался наивысшим в опытных группах 2 и 5: 316–317 ед., что на 13,7–14,0% больше по сравнению с контролем.

По выходу грудной части тушки всех опытных групп имели преимущество в сравнении с контрольной группой. Значения остальных показателей были примерно равными во всех группах, за исключением более высокой доли абдоминального жира в опытной группе 5 (*табл. 8*). Убойный выход в опытных группах оказался выше по сравнению с контролем на 0,8–1,5%.

Уровень обменной энергии в престартерном рационе не оказал суще-

ственного влияния на активность липазы поджелудочной железы (табл. 9). Достаточное количество легкоусвояемых аминокислот и концентрация белка в престартерных рационах опытных групп значительно повысили активность протеазы.

В возрасте 10 сут. высота, ширина и площадь поверхности ворсинок, а также глубина крипт у бройлеров опытных групп 1 и 4 были наибольшими, а в контроле — наименьшими, что свидетельствует о более активном пристеночном пищеварении у цыплят опытных групп. В возрасте 39 сут. длина тонкого кишечника увеличилась у бройлеров опытных групп 2 и 5. В предубойном возрасте наибольшие высота и площадь крипт наблюдались в опытных группах 2 и 4, ширина и глубина крипт максимальными были в опытных группах 1 и 5, а минимальными — в контроле. Отношение высоты ворсинок к глубине крипты самым значительным было в у цыплят в возрасте 10 сут. в опытной группе 5, а наименьшим — в контроле и опытных группах 1, 3 и 4. В предубойном возрасте (39 сут.) минимальное значение этого отношения отмечено в опытной группе 5, максимальное в опытных группах 2 и 3 (табл. 10).

Расчет экономических показателей выращивания бройлеров (*табл. 11*), показал, что полная себестоимость производства мяса бройлеров в контрольной группе по сравнению с опытной группой 5 была ниже на 4360 руб., или на 3,14 %.

Выручка от реализации мяса бройлеров в убойной массе и прибыль в опытных группах оказались выше, чем в контроле. Уровень рентабельности производства мяса бройлеров

Таблица 7 Расход корма на 1 кг прироста живой массы (кг) и индекс продуктивности

**	шщене	продук	IIIDIIOCI			
Группа						
Показатель	Конт- роль	Опыт- ная 1	Опыт- ная 2	Опыт- ная 3	Опыт- ная 4	Опыт- ная 5
Возраст:						
0–10 cym.	1,22	1,18	1,02	1,22	1,22	1,05
0–39 cym.	1,78	1,76	1,71	1,75	1,75	1,69
Индекс продуктивности, ед.	278	287	317	290	290	316

Таблица 8

Выход отдельных частей тушек и субпродуктов, %

7, 7,				A 114		
			Гру	ппа		
Показатель	Конт- роль	Опыт- ная 1	Опыт- ная 2	Опыт- ная 3	Опыт- ная 4	Опыт- ная 5
Грудная часть	33,5	35,7	35,8	35,1	35,6	35,4
Бедра + голени	27,6	27,4	27,3	27,6	27,0	27,2
Крылья	10,6	10,0	10,1	10,4	10,0	9,9
Шея без кожи	4,2	3,6	3,5	4,2	4,1	3,6
Печень	3,4	3,0	3,1	3,4	3,1	3,0
Сердце	0,85	0,85	0,86	0,86	0,84	0,76
Абдоминальный жир	2,2	2,3	2,2	2,3	2,3	2,7
Убойный выход	71,7	73,1	73,2	73,1	72,6	72,5

Таблица 9

Масса и активность ферментов поджелудочной железы и сыворотки крови Группа Показатель Контроль Опытная 1 Опытная 2 Опытная 3 Опытная 4 Опытная 5 0.99 Масса поджелудочной железы, г 0,92 1.05 1.14 1.02 1.18 Ферменты поджелудочной железы 13 933,3 13 823,3 14 085.0 Амилаза, мг/г/мин 14 656,7 13 933,3 12 600.0 45 257,3 48 091,0 48 694,0 47 875,0 47 920,5 47 832,3 Липаза, ед./л Протеаза, мг/г/мин 134,2 148,7 161,7 144,5 157,5 144,7 Ферменты сыворотки крови, ед./л 1 394,9 1 490,7 1 347,0 1 348,7 Амилаза 1 270,3 1 354,4 Липаза 19,2 19,1 18,2 18,6 18,1 19,3 Протеаза 146.4 159.6 170.4 152.2 152.8 159.7

№ 6

Таблица 10

Показатели гистоморфологии кишечника

Показатель	Группа							
ПОКазатель	Контроль	Опытная 1	Опытная 2	Опытная 3	Опытная 4	Опытная 5		
	I	В возрасте 1	0 cym.					
Высота ворсинок, мкм	504,2	537,5	501,7	497,0	522,3	522,7		
Ширина ворсинок, мкм	77,8	86,3	84,8	74,4	88,9	87,4		
Площадь поверхности ворсинок $(\times 10^{-3}, \text{мкм}^2)$	123,8	146,3	133,8	115,9	145,8	143,6		
Глубина крипты, мкм	196,0	209,7	185,5	194,0	205,0	185,7		
Отношение высоты ворсинок к глубине крипты	2,58	2,58	2,71	2,57	2,55	2,83		
	I	В возрасте 39	9 cym.					
Длина кишечника, см	104,0	107,3	113,4	107,0	107,2	110,9		
Длина тонкого кишечника, см	99,5	103,2	108,2	102,2	103,1	106,0		
Высота ворсинок, мкм	810,7	839,0	874,7	868,0	864,5	822,2		
Ширина ворсинок, мкм	83,9	96,0	91,3	83,8	93,1	97,7		
Площадь поверхности ворсинок $(\times 10^{-3}, \text{мкм}^2)$	213,5	251,8	249,7	226,8	251,0	249,7		
Глубина крипты, мкм	203,5	216,7	206,7	201,0	213,7	220,5		
Отношение высоты ворсинок к глубине крипты	4,00	3,87	4,27	4,35	4,07	3,77		

Таблица 11 Экономическая эффективность выращивания бройлеров в расчете на 1000 гол. начального поголовья

			Гру	ппа		
Показатель	Конт- роль	Опыт- ная 1	Опыт- ная 2	Опыт- ная 3	Опыт- ная 4	Опыт- ная 5
Конечное поголовье, гол.	975	975	987	975	975	975
Убойная масса, кг	1 285	1 346	1 447	1 333	1 325	1 427
Выручка от реализации мяса в убойной массе, тыс. руб.	154,2	161,5	173,7	160,0	159,0	171,2
Полная себестоимость мяса, тыс. руб.	139,0	140,8	146,2	139,6	140,0	143,4
Прибыль, тыс. руб.	15,2	20,7	27,5	20,4	19,1	27,8
Уровень рентабельности. %	10.9	14.7	18.8	14.6	13.6	19.4

в опытных группах 1, 2, 3 и 4 превосходил аналогичный показатель контрольной группы на 3,8; 7,9; 3,7 и 2,7% соответственно. Наивысшим уровень рентабельности был в опытной группе 5-19,4%, что на 8,5% выше по сравнению с контрольной группой.

Заключение

Исследование показало, что для повышения эффективности производства мяса бройлеров целесообразно использовать в кормлении цыплят до возраста 10 сут. рацион престартерной фазы, в котором уровень обменной энергии составляет 290—300 ккал, а сырого протеина — 24,6 г на 100 г комбикорма.

Литература

- 1. Мальцева Н.А., Басова Е.А., Амиранашвили Е.И. Эффективность применения комбикормов с повышенным содержанием аминокислот в кормлении цыплят-бройлеров / Н.А. Мальцева, Е.А. Басова, Е.И. Амиранашвили // Птица и птицепродукты. 2012. № 6. С. 34—36.
- 2. Фисинин В.И., Сурай П.Ф. Первые дни жизни цыплят: от защиты от стрессов к эффективной адаптации / В.И. Фисинин, П.Ф. Сурай //Птицеводство. 2012. № 2. С. 11—15.
- 3. Шмаков П.Ф. Протеиновые ресурсы и их рациональное использование при кормлении сельскохозяйственных животных и птицы / П.Ф. Шмаков [и др.] Омск, 2008. 488 с.
- 4. Niholson D. Simple tips to optimize hatchery performance, increase day-old chick

quality / D. Niholson // Poultry international. — $2013. - N_{\odot} 6. - P. 16-20.$

- 5. Willemsen H, Everaert N, Witters A, De Smit L, Debonne M, Verschuere F, et al. Critical assessment of chick quality measurements as an indicator of posthatch performance // Poultry Science. -2008. -N987. -P2358–2366.
- 6. Broiler Performance & Nutrition Supplement, cobb 500. April 2012. $\hfill \Box$

Для контактов с авторами:
Фисинин Владимир Иванович
Егоров Иван Афанасьевич
е-таіl: vnitip@vnitip.ru
Османян Артем Карлович
е-таіl: ptitsa@rgau-msha.ru
Махдави Реза
Малородов Виктор Викторович

ПРОДОЛЖЕНИЕ МЕДЛЕННОГО РОСТА ПОТРЕБЛЕНИЯ ЯИЦ В МИРЕ В 2017 ГОДУ

Спрос на яйца в мире растет и претерпевает изменения. По мере того, как люди узнают о преимуществах яиц как источника белка, а также по мере восстановления экономики, потребление яиц постепенно растет во многих странах мира. С 2015 года по 2035 Рабобанк прогнозирует рост потребления яиц в мире на 50%, причем наибольший рост будет приходиться на развивающиеся страны. В 2015 году большинство потребленных в мире яиц были получены от клеточных несушек, от Мексики до США и Китая. Однако во многих странах происходит постепенный поворот к производству яиц без клеток.

Alyssa Conway. World egg consumption continues to rise slowly in 2017. Poultry Trends, 2017, p. 58, 60.