УДК 637.54

ПОВЫШЕНИЕ БИОЛОГИЧЕСКОЙ ЦЕННОСТИ БЕЛКА РУБЛЕНЫХ ПОЛУФАБРИКАТОВ ПУТЕМ УЛУЧШЕНИЯ СБАЛАНСИРОВАННОСТИ НЕЗАМЕНИМЫХ АМИНОКИСЛОТ*

Гоноцкий В.А., заведующий лабораторией, д-р техн. наук

Дубровская В.И., старший научный сотрудник, канд. техн. наук

Дубровский Н.В., канд. техн. наук

2011

ГНУ Всероссийский НИИ птицеперерабатывающей промышленности (ГНУ ВНИИПП Россельхозакадемии)

Аннотация: Статья посвящена проблемам здорового питания человека. Авторы предлагают ряд рецептур спроектированных полуфабрикатов из мяса птицы и яиц, разработанных на основе физиологических норм потребности взрослого человека в незаменимых аминокислотах, рекомендованных ФАО/ВОЗ.

Summary: The paper deals with the problems of healthy human nutrition. Authors offer some formulations of designed poultry meat and eggs semi-products based on physiological rules for adult human in essential amino acids recommended by FAO/WHO.

Ключевые слова: наука о питании, биологическая ценность, нутриенты, незаменимые аминокислоты.

Key Words: science about nutrition, biological value, nutrients, essential amino acids.

Введение

Одной из самых важных проблем человечества за всю историю его развития является проблема питания.

Вещества, необходимые организму человека для получения энергии, поступают с пищей. Наряду с этим, пищевые вещества используются организмом для обновления составных частей клеток, тканей и органов, для роста и увеличения массы тела, обеспечения работоспособности.

Правильно организованное питание — одно из важнейших условий здорового образа жизни [1, 2].

Неправильно же организованное питание может быть причиной возникновения различных заболеваний: болезней недостаточности или избыточности питания.

Оптимальный рацион питания можно обеспечить только при организованном питании, при условии отсутствия у человека других источников пищи. То есть в таких условиях, когда человек ограничен в выборе других продуктов, которые не включены в рацион, поскольку оптимальным по соотношению нутриентов в суточном рационе должен быть

каждый прием пищи. Поэтому возникает объективная необходимость в создании продуктов питания, способных обеспечить эту потребность.

За историю развития цивилизации сформировалась особая область знаний — наука о питании, где наиболее известной является теория сбалансированного питания. Крупный вклад в развитие этой теории внесли академик А.А. Покровский и его ученики [2].

Однако балансный подход и вытекающая из него идея рафинированной, безбалластной пищи принесли болезни цивилизации — атеросклероз, диабет, остеохондроз, остеоартроз и др.

Теория сбалансированного питания уделяла недостаточно внимания балластным веществам, хотя и не отрицала полностью необходимость их потребления.

В связи с дальнейшим развитием науки теория сбалансированного питания была подвергнута переоценке, что привело к появлению новой теории — адекватного питания.

Согласно этой теории, необходимым компонентом пищи являются не только полезные, но и балластные вещества (пищевые волокна).

В разработку теории адекватного питания существенный вклад внес академик А.М. Уголев [3].

Питание должно быть не только сбалансированным, но и адекватным, т.е. соответствовать потребностям и возможностям организма, и сформировавшимся процессам усвоения пищи.

Необходимые организму человека пищевые вещества в отдельных природных продуктах питания, как правило, не содержатся в оптимальных соотношениях, поэтому возникает необходимость использовать различные продукты с целью удовлетворения его потребностей [4].

Идеальным считается питание, при котором приток пищевых веществ в организм соответствует их расходу.

Питание современного человека нельзя считать полноценным и адекватным, так как современный ритм жизни не позволяет уделять достаточно времени «правильному» питанию. Поэтому одной из важных задач исследователей в области питания является разработка комбинированных продуктов и рационов, обладающих возможно более высокой

^{*} Статья разделена на 2 части. Данный материал представляет собой введение в тему. Само исследование и результаты описаны во 2-й части, которая будет опубликована в следующем выпуске журнала.

биологической ценностью, т.е. они должны быть нутриентно адекватными и в то же время относительно недорогими и доступными.

Для различных групп населения на основании средней потребности были разработаны оптимальные физиологические нормы потребления белков, жиров, углеводов, витаминов и минеральных веществ.

Белки животного происхождения являются главным, наиболее ценным и незаменимым компонентом питания. Это связано с той огромной ролью, которую они играют в процессах развития и жизни человека. Белки являются основой структурных элементов тканей, поддерживают обмен веществ и энергии, участвуют в процессах роста и размножения, обеспечивают механизмы движения, развитие иммунных реакций, необходимы для функционирования всех органов и систем организма. Единственным источником образования белков в организме являются аминокислоты белков пищи.

По современным представлениям, под биологической ценностью пищевых белков понимают зависящую от аминокислотного состава и других структурных особенностей степень задержки азота или эффективность его утилизации для поддержания азотистого баланса у человека. Иными словами, указанный критерий позволяет установить место тех или иных пищевых белков по степени сравнительной пользы для организма человека. Биологическая ценность белков зависит от таких факторов, как:

- сбалансированность аминокислотного состава, в первую очередь, по незаменимым аминокислотам;
- доступность отдельных аминокислот:
- степень усвояемости белка.

Для обеспечения нормального питания организма необходимы разнообразные белки животного и растительного происхождения, содержащие незаменимые аминокислоты в соответствии с потребностью организма человека.

Белки животного происхождения не только хорошо усваиваются сами, но и намного повышают усвоение белков растительного происхождения, причем лучший эффект достигается при сбалансированности аминокислотного состава при каждом приеме пищи [5].

Легко предположить, что биологическая ценность белка, в котором отсутствует хотя бы одна незаменимая аминокислота, будет равна нулю. Если белок имеет низкую биологическую ценность, то он должен присутствовать в пище в больших количествах, чтобы удовлетворять потребность организма в незаменимой аминокислоте. При этом остальные аминокислоты будут поступать в организм в количествах, превышающих потребности организма. Так и возникает перегрузка отдельных метаболических циклов. Такие лишние аминокислоты подвергаются дезаминированию в печени и превращаются в гликоген или жир. Для нормального синтеза белков в организме человека все незаменимые аминокислоты должны поступать с пищей одновременно. Отсутствие одной или нескольких незаменимых аминокислот в пищевом рационе замедляет обмен белков [6].

Вопрос о характере и механизмах расстройств белкового обмена в результате нарушения благоприятных соотношений незаменимых аминокислот в диете всегда подвергался интенсивному изучению. Тяжелые последствия для здоровья может иметь не только недостаток какой-либо незаменимой аминокислоты, но и ее значительный избыток. В основе развития последствий диспропорции аминокислот в диете могут иметь место различные механизмы.

Помимо имеющего наибольшее значение так называемого имбаланса аминокислот, который характеризуется недостатком в диете какойлибо из незаменимых аминокислот, (лимитирующей), необходимо различать также токсический эффект самих аминокислот, аминокислотный антагонизм и сложные взаимоотношения между аминокислотным и витаминным обменом [4].

Таким образом, диспропорция в аминокислотном составе пищи может приводить к достаточно сложным нарушениям белкового обмена. Это заставляет исследователей при определении аминокислотной ценности

продуктов придавать особое значение не только абсолютным количествам отдельных аминокислот, но и соотношениям их количеств, т.е. соответствию так называемой формуле аминокислотной потребности человека.

Птицеводство - отрасль сельского хозяйства, которая производит высокопитательные продукты животного происхождения. Особое значение этой отрасли заключается в том, что она производит полноценные продукты питания (мясо, яйца), необходимые для нормальной жизнедеятельности организма человека. Значение мяса и мясопродуктов в питании населения определяется тем, что они служат источником полноценных белков, жира, минеральных веществ, некоторых витаминов, потребление которых является необходимым для нормального функционирования организма [7].

Высокая пишевая и биологическая ценность белков мяса птицы обусловлена практически полной перевариваемостью их ферментами желудочно-кишечного тракта, значительным содержанием незаменимых аминокислот. Именно поэтому мясо и мясные продукты как один из основных источников поступления белка имеет большое значение в питании человека, а мясо птицы к тому же — более доступный продукт для большинства населения.

Высокая биологическая ценность мяса птицы подтверждается значением коэффициента усвоения белков мяса птицы организмом, который составляет 90% [8]. По витаминному составу оно значительно богаче и говядины, и свинины. В сравнении с другими пищевыми продуктами потребители отдают предпочтение продуктам из мяса птицы, из которого можно приготовить широкий ассортимент блюд — от изысканных деликатесов до сравнительно дешевых.

Содержание неполноценных белков в мясе птицы составляет около 7%, а в говядине — 15-20% от общего количества белков [8]. В связи с тем, что мясо цыплят-бройлеров в общем объеме производства мяса птицы в Российской Федерации занимает наибольшую долю (87,5%), рассмотрим некоторые особенности его химического состава.

Химический состав мяса цыплят-бройлеров зависит от категории (сорта) (табл. 1) [7].

Белки мяса цыплят-бройлеров содержат незаменимые аминокислоты (табл. 2) в количествах, близких потребностям взрослого человека [9].

Соотношение белка и жира в мясе цыплят-бройлеров близко к оптимальному.

Аминокислоты, в свою очередь, являются строительным материалом важнейших элементов организма — мышечной ткани, ферментов, гормонов.

Анализ аминокислотного состава мяса цыплят-бройлеров выявил дефицит по незаменимой аминокислоте валину по сравнению с эталоном, установленным ФАО/ВОЗ для взрослого человека [9]. Вместе с тем в яйце курином (табл. 2) содержание валина и некоторых незаменимых аминокислот превышает их количество в белке мяса цыплят-бройлеров [9]. Для получения сбалансированного продукта по незаменимым аминокислотам возникает необходимость корректировки содержания валина.

Материалы и методы исследований

С целью пояснения направленности работы приведем некоторые термины и понятия, которые использованы при выполнении этих исследований.

Проектирование пищевых продуктов — процесс создания предпочтительных рецептур, обеспечивающих задаваемый уровень адекватности этих продуктов метаболической специфике определенных групп потребителей.

Проектированию продуктов с учетом их нутриентной адекватности уделяется большое внимание многими исследователями [10].

Утилизация — использование веществ пищи в метаболизме.

Утилитарность — возможность потребления с пользой или полезностью, т.е. возможность усвоения [11].

Коэффициент утилитарности (α_j) любой незаменимой аминокислоты характеризует потенциальную эффективность ее использования.

Коэффициент рациональности аминокислотного состава (Rp) — численно характеризует сбалансированность незаменимых аминокислот

Таблица 1 Химический состав мяса ныплят-бройлеров в 100 г

Animi reckim coetab mica quintini oponitepob b 100 i			
Показатели	Цыплята-бройлеры		
	1 кат. (сорт)	2 кат. (сорт)	
Вода, г	63,8	67,7	
Белок, г	18,7	19,7	
Жир, г	16,1	11,2	
Углеводы, г	0,5	0,5	
Зола, г	0,9	0,8	

Таблица 2

Аминокислотный состав мяса цыплят-бройлеров и яиц куриных (г), в 100 г белка мяса

Показатели	Кусковое мясо цыплят-бройлеров	Яйца куриные
Белок, %	19,8	12,7
Валин	4,80	6,08
Изолейцин	3,86	4,70
Лейцин	7,53	8,51
Лизин	8,63	7,11
Метионин+цистин	3,64	5,64
Треонин	4,13	4,80
Триптофан	1,60	1,61
Фенилаланин+тирозин	6,99	8,88

по отношению к физиологически необходимой норме (эталону).

Показатель «сопоставимой избыточности» содержания незаменимых аминокислот (σ) характеризует суммарную массу незаменимых аминокислот, не используемых на анаболические нужды [9].

В качестве сырья в работе использовали кусковое мясо цыплят-бройлеров, меланж яичный, муку льняную, печень куриную, панировочные компоненты.

В расчетах композиционного состава использовались литературные данные аминокислотного состава этих компонентов [10], а также результаты собственных исследований.

Для обеспечения сбалансированного состава полуфабрикатов по незаменимым нутриентам к основному сырью подобраны пищевые ингредиенты с достаточным уровнем незаменимых аминокислот, чтобы обеспечить в образцах полуфабрикатов необходимое количество каждой незаменимой аминокислоты.

В основу расчета композиционного состава полуфабрикатов из мяса цыплят-бройлеров были положены разработки академиков Рогова И.А., Липатова Н.Н. (мл.) и других исследователей [6, 9, 10].

Мясо и яйца птицы являются главными продуктами птицеводческой отрасли. На первом этапе проекти-

рования новых белковых композиций была подобрана информация о некоторых предполагаемых компонентах по следующим показателям:

- массовая доля белка, %;
- массовая доля незаменимых аминокислот в белке сырья, г/100 г белка;

А затем были рассчитаны значения следующих коэффициентов:

- рациональности аминокислотного состава белка;
- сопоставимой избыточности незаменимых аминокислот.

Для проектирования новых рецептур полуфабрикатов были приняты физиологические нормы потребности в незаменимых аминокислотах взрослого человека, рекомендованные ФАО/ВОЗ (1973).

На основании этих норм и аминокислотного состава белков сырья вначале были рассчитаны скоры аминокислот белка мяса цыплят-бройлеров, а затем куриного яйца и некоторых возможных наполнителей.

Список литературы доступен на сайте.

Для контактов с авторами: Гоноцкий Василий Александрович тел. (495)944-6619 (доб. 4-63) Дубровская Валентина Ивановна Дубровский Николай Валерьевич